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Abstract

The effectiveness of viscous elements in introducing damping in a structure is a function of

several variables, including their number, their location in the structure, and their physical

properties. This paper addresses the questions of the placement of these elements and the

selection of their physical parameters via optimization techniques. The paper investigates

various metrics to define these optimization problems, and compares the damping profiles

that are obtained. Both discrete and continuous optimization problems are formulated and

solved, corresponding, respectively, to the problems of placement of damping elements and to

the tuning of their parameters. Particular emphasis is placed on techniques to make feasible

the large scale problems resulting from the optimization formulations. Numerical results

involving a lightly damped testbed structure are presented.

1. Introduction

A problem of considerable importance in the development of technology for future space

structures is the analysis and optimization of passive elements placed in these structures.

Passive damping introduced by these devices is an effective mechanism for reducing peak

responses in the vicinity of resonant frequencies for lightly damped systems, This not only

enhances the stability of the open loop system, but also allows for the implementation of

more aggressive control strategies to achieve greater performance. This philosophy is being

pursued on a series of Control Structure Interaction (CSI) testbeds at the Jet Propulsion

Laboratory.

The effectiveness of viscous elements in introducing damping is a function of several variables,

including their number, their location in the structure, and their physical parameters. This

paper is concerned with the problems of the placement and tuning of the damping param-

eters with particular emphasis on techniques to make feasible the numerical solution of the

large scale problems associated with the optimization of these variables. Two qualitatively

different optimization problems are considered in the paper: a combinatorial optimization

problem is posed to determine the placement of elements, and a mathematical programming
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problem is posed to optimize the damper parameters. A simulated annealing strategy [6] is ‘*

used for the combinatorial optimization problem, while a sequential quadratic programming

algorithm (SQP)  [2] is applied to the damper parameter optimization problem. The question

of developing a hybrid approach for combining these strategies into a single approach is not

taken up in the present paper, and the primary focus here is on how to solve each of these

problems individually.

TWO different metrics are developed for the optimization. The  first metric measures damping

in selected modes. In practice these modes would be chosen. based on their participation in

particular transfer functions and their frequencies (e.g., at loop gain crossover). The second

metric is the 7-t2 norm of selected transfer functions of interest. These would typically be

between disturbance inputs and measured or controlled outputs.

Fundamental ingredients in any optimization solution are the cost functional evaluation and

the determination of search direction. Regardless of the metric that is used, these evaluations

arc especially challenging problems here due to the size of the system. (The JPL testbed is

modeled with approximately 250 degrees–of–freedom. ) An eficient  Newton’s method that

exploits the small rank perturbations to the nominal stiffness matrix introduced by the in-

sertion of damping elements is developed for function evaluation of the damping metric. In

a similar manner an eigenvector  update technique that also uses a small rank perturbation

approach leads naturally to an analytic gradient evaluation of the damping metric which

circumvents the need for the costly finite difference approximations that are necessary for

deriving a search direction in the parameter optimization problem. The Newton algorithm

with the analytical gradient calculation produces a very efficient implementation of the SQP

algorithm for this optimization problem. The fi2 metric requires solving a large order Lya-

punov equation. Here a Ritz reduction method that has been studied in [1] is employed

to reduce the numerical bottleneck created by solving large systems of this type. Yiu [10]

has also utilized this reduction method in analyzing the system level behavior of dampers

in structures. In [9] a ‘(time–domain” energy metric is used to optimize the placement of

dampers.

The problem addressed in this paper can be viewed as a very specialized version of the general

3



design problem of simultaneous placement of sensors and actuators, and selection of control

gains. The damper placement and tuning problem focuses this more general problem to a very

specific architecture – collocated actuator and sensors, and a diagonal multivariable  position

and velocity feedback structure. Various aspects of this general problem have been taken up,

for example, in [9],[13],[14],[15]. The article [13] seeks to optimally place actuators for static

alignment and shape control, and employs a heuristic integer programming programming

algorithm for finding the placements. In [14] and [15] combined actuator and sensor placement

is addressed by successive deletion of actuators” and sensors that contribute least to closed

loop performance. In [9] a ‘(time-domain” energy metric is used in conjunction with simulated

annealing to place dampers in a truss structure. Other aspects of this problem are taken up

in for example [11], [12], [16], [17], [18].

A brief outline of the paper follows. The second section introduces the general problem for-

mulation. This includes the modeling of the mechanical system with damping elements, the

definition of the design space, and the type of cost functional and optimization problems that

will be addressed in the remainder of the paper. Section 3 is concerned with functional and

gradient evaluation for a class of damping functional. The Newton algorithm for the func-

tional evaluation is developed as well as an algorithm for computing the damping functional

gradient map. In the fourth section the 1+2 metric cost functional is introduced, and the Ritz

reduction method for approximating the calculation of this cost objective is discussed. in the

fifth section several example problems involving the JPL Phase B testbed are solved. The ef-

ficacy of the computational techniques are illustrated as well as some pitfalls associated with

using a modal truncation approach as an approximation technique for computing damping

values. The examples demonstrate that optimizing appropriate cost functional is an effective

method for selecting damper placement and tuning parameters to tailor structural response.

2. Problem Definition

We begin with the model of the system. Assume that the nominal structure is undamped and

r dampers are added to the system. (The number of dampers is fixed throughout this paper. )

Each damper is modeled as a collocated position plus velocity feedback control element with
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9 gains k; and k:, respectively, for i = 1 ,..., r. Let &a denote the control influence vector

corresponding to the i~~ damper location, let M denote the m x m mass matrix, and let K

denote the m x m stiffness matrix. The effect of the damper in the structure is modeled as

where ~ represents a forcing function. Next let @ denote the modal matrix so that @tM@  = I

and @tK@ = D, with

D = diag(wf, u~..., w~). (2.2)

Set b; = @f~i and let 1? denote the n x r matrix with columns b i. The components of the

vector bi are denoted by superscript, so that bi = (bj, . . . . b~)t. Let KP = diag(k~,  . . . . k;)  and

Ku = diag(k~,  . . . . kj).  The damper parameters are thus encoded in the triple (R, KP, Ku) c

R “xr x R’ x Rr.

Next let J : Rnxr x R’ x R’ + R denote the objective functional for the optimization. In

subsequent sections J will be taken as either a measure of system level damping, or the 1i2

norm of the transfer function between specified inputs and outputs. I.et /7 c Rnxr  denote

the discrete set of possible values of B corresponding to the finite number of locations for

distributing the dampers in the structure. To complete the definition of the design space we

let ~KP, ~KV C R denote the admissible values for damper stiffness and dashpot coefhcients,

respectively.

With this notation, the general optimization problem is posed as

min J(B, K’p, K.).
UXflKp XCIKv

(2.3)

This paper examines two distinct subproblems  associated with the optimization problem

above. The first problem derives from fixing the damper locations, i.e., fixing the value of B,

and then optimizing the parameters KP and K’v. This is called the tuning problem, In this

case the mapping (KP, KV) + J(B, Kp, Kv) will be a smooth map for the choices of J treated
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in the paper. ” A sequential quadratic programming method is used to solve this optimization

problem. Sequential quadratic programming is a method for solving general nonlinear opti-

mization problems with nonlinear constraints (both equality and inequality constraints). It

is based on iteratively solving a sequence of quadratic programming subproblems  obtained

by approximating the cost and constraint functions. These subproblems  can also be related

to applying a Newton’s method for solving the Kuhn-Tucker conditions of the full problem.

In the second problem KP and I<V are held fixed while the damper locations, B, are optimized.

To select r damper locations out of N possible candidate locations (N is the total number of

feasible locations in the structure) such that J is optimized, is referred to as the placement

problem. This is a combinatorial optimization problem whose true optimal solution may

only be obtained through an exhaustive search of all possible configurations. Due to the

fact that the potential number of candidate locations for placement (N) will typically be

large in a large space flexible structures, the total number of combinations, ,! ~~~r),,  becomes

exceedingly large. Therefore, it is impractical, if not completely impossible, to conduct an

exhaustive search. Thus, instead of finding the optimal solution, a reasonable approach is to

find a sub-optimal solution with an acceptable cost.

The simulated annealing method was developed as a heuristic optimization approach to solve

combinatorial optimization problems with multiple local minima [6]. The basis of simulated

annealing is to occasionally accept nonimproving solutions with a certain diminishing prob-

ability, It is these probabilistic jumps that allow the interim solutions in the optimization

process to climb out of local minima. This method has been applied to the placement prob-

lem [9] successfully where a different performance criterion was used. Our approach follows

the algorithm in [9] closely and more details can be found there.
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3. Damping of Selected Modes.b

Referring to the model (2.1), the eigenvalues of the damped system are given by the zeros of

the function det.fi(~)  where

H(A)  = A21 + MIKvBt + D + BKPIF. (3.1)

Now let (k denote the damping introduced into the k~~ mode due to the parameter selection

(B, 1{,, I{V). Let Ak denote the k’~ eigenvalue. Then

(3, 2)

The’damping metric that is optimized is of the form J = g(fl(l?,  Kp,  Ku), . . . . (n(B,  Kp, K–v))

where g is a smooth function from 1? + R (e.g. g = ~iG1 fi where 1 denotes the set

of targeted modes. ) The first order of business for either the continuous or combinatorial

optimization problem is the evaluation of the functional g. The major effort in evaluating

this function is to determine the perturbed eigenvalue ~~, since (k is readily obtained from

(3,2). For this purpose a Newton scheme for finding these eigenvalues will be developed. It

is based on the following theorem.

Theorem 1. Let bk denote the vector (h?, . . . . t$)~. Let D(A) denote the r x r matrix valued

function with ijth  entry ~ij,

n
‘W (~~: +  ~;),

C7ij =  6ij  +  ~ (Az +Ld?)

(Here 6ij denotes the standard Kronecker delta, i.e., Aij = 1 if j = i, and zero otherwise.)

Then in an open dense set of the problem data, A* is a zero of det~(~) if and only if A“ is a

zero of the function ~k(~),

where Au’j(E) denotes the adjugate of E (the transpose of the matrix of cofactors).

Proof. For A # ii~j the identity

H(A) = (A21 + D)[I + (A21 + D)-l B(AK” + Kp)l?’]
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can be shown to hold generically with respect to the problem data (i.e., in an open dense

subset of the parameter space), For such values of A the identity

dct(lnxn + XY) = dei!(l,nxm + YX),

where X and Y are n x m and m x n matrices, respectively, and lky.k denotes the k x k

identity matrix, leads to

cZeiH(A)  = dei(A21 + D) * f-iet[lrxr + l?f(A21 + D)-*B(MU + K,)].

I,et R = J + l?t(~’  + D)-l B(AKV + I(P) and let rjj denote its ijt~ entry, Then

Next let V denote the r x r matrix with i~~~ entry vij = b~b$(~kj + k;)  and observe that

det(R) = (A2 + u~)-’det((A2  +LJ~)E + V).

Now since the entries of E are rational functions, E is defined and invertible everywhere in

the complex plane except for finitely many values of A. Thus except for these values of A, we

have

And since V = b~(bk)’(Mv  + Kp),

dci((A2 + Lo~)E  + V) = (A2 + w~)rdet(~)  * {1 + -~2 ; w: [(AKv + Kp)hk]’s-%’}.

Therefore,

Since dciH(+iwl) # O holds for all 1 in a dense open subset of the parameter space, on this

parameter set deilI vanishes precisely when ~k vanishes.///
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* The function j~ will next be used to determine cigenvalues  of the damped system in a neigh- ‘

borhood  of the undamped eigenvalue iwk. Note that when Kv = KP = O, j~(io~)  = O. This

observation combined with the fact that ~k is continuous (even analytic) in a neighborhood

of iwk, and smooth with respect to the problem data, makes it an excellent function for ap-

plying Newton’s method for computing the perturbation in the k~h eigenvalue resulting from

the insertion of damping elements.

The update law for Newton’s method to determine the zero of ~k in a neighborhood of iwk is

& = A;-l – fi(~;-*)/fk(A;-’), (3.3)

where A; denotes the n ‘h iterate and ~{ denotes the derivative of ~k. The computation of

j’~ requires computing the derivative of Adj(X). Adj(Z)  can be efficiently computed without

either explicitly computing the matrix of cofactors determinental  expansion, or by having to

form E-l (recall that for E invertible, Adj(E) = 1 /de-t  (E)2-1 ). This computation is carried

out by using the singular value decomposition E == UDW together with the relationship

Adj(UDW)  = W’*Adj(D)U*  for U and W unitary and D diagonal. (Note that AcZj(D)  is

easily computed by inspection. ) However, an analogous computationally  simple and effective

means for computing the derivative of the Adj(.  ) function without resorting to the relationship

Adj(S)  = 1 /det(S)S-l has not been found. The Newton method that is developed is based

on this relationship. With this in mind .fk is written as

.fk = ~e~(~)(~~  + w; + [(~~v + h’p)bk]’~%k]).

Although f~ computed in this fashion is not defined at points where E is not invertible, it is

not difficult to show that the appropriate limits do exist at these points.

To compute j~ note the following two derivative relationships: (i) Z-l’ = –E-l E’Z-l, and

(ii) (cZet(E))’  = de-t(Z) ir(D-lIY). The explicit update law for (3.3) is then

+([K. – (A;-l + Kp)X--l~’]bk)’E-l  ~k},

where

(3.4)

h = (A:-*)2 + w:+ < (&Ku -I- Kp)bk, S-’%k >.
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In the event that E is not invertible, we can use

difference approximation to approximate j~. Since

~~ as defined in ‘1’heorem  ] with a finite ‘

j~ is analytic outside of the set {+iw/}/#~,

finite differences should yield good approximations to .f~. However, since there are only

finitely many values of A for which E is not invertible, (3.4) will be valid everywhere outside

this finite set of values.

This evaluation capability is all that is required for the combinatorial optimization problem,

For the SQP algorithm it is desirable to have an analytic form of the gradient of the cost

functional. That is, we need to compute VJ with respect to the design variables KP and K..

(Recall that now B is fixed.) Let x;,  z = 1,..., 2r denote these design variables, where the

first r elements correspond to the diagonal entries of K’P, an d the next r elements correspond

to the diagonal entries of KV. Now write & = uk + ~vk. Then wc have

(3.5)

(3.6)

The partial derivatives of Uk and vk are the real and imaginary parts of the corresponding

partial  derivatives of the eigenvalue Jk.

To obtain the eigenvalue  derivative of ~k, the system (2.1) is placed into the first order form:

.
i= Ax+j, (3.7a)

where

( o
A =

‘ ) ~=[:jl– D  –  BKpBt –BKvBf
(3.7b)

There is a one-to–one correspondence between the solutions to dei!}l(~)  = O and the eigen-

value problem M – A = O. Furthermore, if det~~(~k)  = O with ~(~k)@k = O, it is straight-

forward to verify that (~k – A)~k = O, where

To compute the eigenvalue  derivative of ~k it is also necessary to have the left eigenvector of
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A, ~~A = ~k$~. This eigenvector is easily computed to be

Applying the standard formula for eigenvalue derivatives (see for example [3]) gives

(3.8)

(3.9)

Now all that is required to complete the derivative computation is the eigenvector ~k. This

is obtained as follows. We first note (as in the proof of Theorem 1 ) that ~i~k  is generically

not an eigenvalue of II(A).  Thus if Ak denotes the perturbed eigenvalue, we have

Consequently if ~k is the associated eigenvector,  then

and for any vector x

<~k, x>=– < (~:] + D)-ll?[A~Kv  + Kp]Bt@k,~ >.

Multiplying (3. 10) on the left by l?t shows that Bt~k solves the equation

(3.10)

(3.11)

These observations motivate the following

Propos i t ion  2 . Suppose 1? has full rank. Then there is a one-to-one correspondence

between the independent solutions of equations (3.10) and (3.11) given by

?)= l?f#, (3.12)

and

4 = -(~;l + D)-’l?(~& + IfP)@. (3.13)

In particular, the eigenvectors of the perturbed system corresponding to the eigenvaluc ~k

(or equivalently, the nullspace  of ff(~k)), can be obtained via the solutions of (3.1 1) togct her

with (3.13).
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Proof. It has already been shown that if 4 is in the nullspace of lkf(~~) then l?d~ satisfies ‘

(3.1 1). Conversely, suppose @ solves (3.11). Then @ = l?td  where 4 is defined as

# = -(M1 + D)-%’(w.  + Kp)?j.

And since ~~ = Bt@, it follows  that #J solves (3.10) and is in the nullspace of ~(~k),

To show that the correspondence between solutions is one-t~one,  note first that since II

has full rank, the matrix (~~1 + D)-l ~(~/c~{v  + ~P)  has trivial nullspace,  so that if @l, . ...4P

are independent solutions of (3.11), then the associated vectors ~1, . . . . 4P are independent

solutions of (3.10). TO prove the result in the opposite direct iorl suppose that ~1 and 42 are

independent solutions of (3.10) with l?~g$ = 713t@2  and ~ a nonzero scalar (and thus leading

to dependent @i in (3.12)). Inserting these solutions into (3.10) and taking their difference

leads’ to #l = 7@2, a contradiction. Thus l?~~l  and W@z are independent, completing the

proof of the proposition.///

]n summary, the function J = g(tl (B, Kp, Jfv), . . . . (~(B, ~fp, K.))  and its gradient are com-

puted as follows:

(i) Apply the Newton iteration (3.4) to obtain Ai, i G 1, where 1 denotes the set of target

indices,

(ii) Use (3,2) to obtain (i, i E 1.

(iii) Evaluate g((i, . . . . (n) using (ii) and the definition of g.

1’o obtain VJ with respect to x = [diag(Kp) diag(Kti)]’:

(iv) Solve  (3.1 1) to obtain @i

(v) Use (3.13) followed by (3,8) to obtain ~i and ~~

(vi) Compute dA/~Xi from (3.7b).

(vii) Apply (3,9) followed by (3.6) and then (3.5) to obtain Vg.

.
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4. Z2 Optimization

The ?tz cost optimization problem is formulated to optimize specific input-output relation-

ships. These relationships are connected to the dynamical equation (2.1) via the system

i = Ax + l?~f, (4.la)

y = Cx. (401b)

Here A is defined as in (3.7), and

x=[J ‘d+,]
.

where the vector q represents modal coordinates and ~, is the disturbance input influence

matrix. The objective is to minimize the 7-t2 norm of the transfer function from the input

~ to the output y. The  spectral content of the disturbance input can be shaped, but for

simplicity a white noise input is assumed. The ‘HZ cost is then given by [5]

J(B, Kp, K.) = ir(CW’Q), (4.2a)

where Q solves the Lyapunov equation

AQ + QAT + B,B; = O. (4.2b)

To effectively solve (4.2) as part of an optimization loop requires a significant reduction in

its size.

To motivate the method that is used for reducing (4.2), recall that [5]

h(CtCQ) = ~w lG(t)12dt,

where G(t) is the impulse response of the system,

G(t) = ceA’Bd.

Now eAt~, is the response of (4.1) to the input j(t) = c$~(t),  where &~(i) denotes the matrix

comprised of Dirac  delta functions in each of the system’s input channels. In the forced mode

technique [4] improved transient response approximation for systems of the form
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is attained by augmenting a reduced modal model with the Ritz vector K-l ~. Furthermore,

analysis and empirical studies in [1] reveal that the forced mode method is also effective

for obtaining high fid~lity  reduced models for the system (2.1). We are led to include Ritz

vectors  (force modes) to statically correct each of the forcing inputs, both the “control” inputs

corresponding to the dampers and the disturbance inputs associated with the influence matrix

ll~. A reduced model is obtained by pre-multiplying  and post-multiplying (2.1 ) by the matrix

l’,

7’ =  [@, :  K-l&’  :  K-%], (4.3)

where Or denotes the matrix comprised of the first m eigenvectors of the nominal system.

For computational purposes it is desirable for T to be M-orthonormal.  So Iet P denote the

matrix obtained from T by orthonormalizing its columns. Then in first order form the system

(4,1 ) reduces to

x = Amx + l?~j, (4.4 CL)

y = Cmx, (4.4b)

where

[

o I
Am=

1– Dm  –  PtBKpBtP –PtBKuBt  ‘

[ 1

oB? = , cm = CP,
Pt Bd

and llm = diag(u~, . . . . u;) where r = m+ number of input force vectors.

An approximation to the cost functional (4.2) is computed as follows:

(i) Form the matrix Tin (4.3).

(ii) Orthonormalize  its columns with respect to the mass matrix M.

(iii) Form the matrices Am, B$’,  and Cm in (4.4).

(iv) Solve (4.2b) with A and l?~ replaced with Am and Bj’, resp~ctively.

(v) Evaluate (4.2a) with C replaced by Cm
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5. Numerical Examples

A detailed description of the JPL testbed can be found in [7] (see Figure 1). Briefly, the

system is modeled with 249 degrees of freedom and contains 186 candidate locations to insert

damping devices. This study is restricted to placing and tuning three viscous dampers. The

stiffness of these dampers can vary between 8,000 lbs/in and 100,000 lbs/in, and the damping

coefficients have bounds O S kv < 1000 lbs–sec/in.  TO obtain the correct Kp in (2.1), it is

necessary to use the value that is the difference between the damper stiffness and the truss

element it replaces.

Because the accuracy of the cost functional evaluation methods is of paramount importance,

Table 1 contains a comparison of eigenvalue approximations using the full order model, the

Ritz reduced model, a modally reduced model, and the Newton method. The first column

in the table contains these values for the undamped nominal system. All of the other values

correspond to the damped system after three viscous dampers are inserted into the struc-

ture. (The placement as shown in Table 1 was obtained by optimizing the sum of damping

coefhcients  in the first seven modes of the system. This will be discussed more below. ) The

conclusion here is that the Ritz reduction technique and the Newton iteration yield high

precision estimates with enormous reduction in operation count, while the modally reduced

model produces inaccurate results.

What is of equal significance is that not only does the modally reduced model produce in-

accurate results, it also leads to inaccurate trends for choosing damper parameters. Figure

2 contains damping predictions of the second system mode as a function of the damper vis-

cous parameter coefficient. Note that the full and Ritz reduced models lead to an optimal

coefficient of approximately 500 lbs–sec/in,  while the modally reduced model leads to a sig-

nificantly larger value that is very suboptimal.  The Ritz reduction method also leads to very

accurate approximations to solutions to the Lyapunov equation (4.2b) via the substitutions

outlined in Step (iv). The Ritz approximation provided six digits of accuracy for the solution

of the Lyapunov equation.

Table 2 contains the eigenvalues of two damped systems where the damper locations were
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chosen by the simulated annealing process to optimize in the first case an Mz-norm, and

in the second case a direct metric of the damping. For both optimization problems the

simulated annealing process was initiated by using 20 randomly chosen combinations to

obtain an initial temperature (energy) by first computing the average energy variations among

these initial 20 configurations. This value is divided by 0.4 to yield a 67% probability for

accepting nonimproving solutions initially. The “temperature” is then reduced by a factor

of 0.8 successively until convergence is reached. More details on the entire’ process and the

selection of these parameters can be found in [9]. The optimal placement of the dampers for

these solutions are shown in Figure 3. The first set of eigenvalues  corresponds to optimizing

the placement with respect to the ?-tz norm of the transfer function from an input disturbance

located at grid point 412 between the third and fourth bays of the structure, and outputs

consisting of all of the nodal displacements di rwtly beneath the trolley (see Fig. 1). The

disturbance was generated as the output of a G’k order low–pass filter with a bandwidth of

25 Hz. This choice of weighting function reflects the objective of damping disturbances in the

frequency range below 25 Hz. The second set of eigenvalues results from placing the dampers

to optimize the sum of the damping in the system modes belo~~ ?.5Hz. A comparison of the

respective Bode plots of the resulting transfer functions is also given in Figure 3. As observed

from Table 2 and Figure 3, large damping is introduced into the second and third modes as

a result of optimizing the damping. However, this is at a sacrifice to the damping attained

attained in the other modes. The M2 norm optimization metric distributes the damping

across the modes in a much more even fashion.

The next example illustrates how particular modes can be targeted for damping. The objec-

tive in this example is to achieve maximal damping in modes 5,6, and 7 without sacrificing

darnping in any one of them. A metric of this type is useful when used in conjunction with

control design. For example, if a certain controller bandwidth is selected, then damping

modes in the loop gain crossover frequency region is highly desired. A minimax optimization

problem is appropriate for this objective, i.e. maximize the minimal damping achieved in

the fifth, sixth, and seventh modes. A two step procedure consisting of first choosing the

damper locations followed by optimizing their parameters was implemented. A smooth cost
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) functional approximation to the minimax problem was used:

7

9 = ~exP(Pfi),
i=fi

wit I p representing a ‘{large” parameter. This choice of cost functional can be rigorously

justified as an approximation to the minimax problem [8]. We first fixed the stiffness and

dashpot values to kP = 80001  bs/in and k. = 3201& – see/in, and optimized the damper

locations via simulated annealing with respect to the metric above. With the new damper

locations, the parameters of the dampers were optimized with respect to the approximate

minimax metric using the SQP algorithm. (We used the NPSOL package developed at

the “Systems Optimization Laboratory at Stanford University for the SQP algorithm.) The

damper locations and system damping values (both before and after tuning the damper

parameters) are shown in Figure 4. The strategy located the dampers near the “arm” of

the testbed. As can be seen considerable damping is added to the targeted modes over the

“optimal” locations obtained for either the sum of damping metric or the lIt metric. Also

note that after the dampers are tuned, the damping in modes 6 and 7 are more than doubled

at the expense of about a 2070 decrease in damping in mode 5.

6. Concluding Remarks

The use of strategically placed damping elements in future large space structures will play

a significant role in their design and development, The ability to analyze, predict, and

ultimately optimize system responses with respect to these passive devices is critical for the

application of this technology.

Several aspects and approaches to carrying out the analysis of these problems were discussed

in the paper. The fundamental ingredient in each of these problems is the choice of perfor-

mance functional and its evaluation. Because these systems are typically prohibitively large

for direct functional evaluation, alternative solutions are necessary. In the paper accurate

and efhcient  methods were introduced for functional and gradient evaluation, including a

Ritz reduction technique and a Newton algorithm. We also presented an example where

17



straightforward modal reduction led to very erroneous results,

The results of the paper indicate that significant levels of damping can be introduced into

these structures in a very systematic and tailored manner,

,
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U n d a m p e d

S y s t e m

Damped System with 3 Dampers

at Location 132, 140, 142

(k, =8, 000 lb/in, k.= 320 lb/in)

Fkequency

12 Modes

plus

3 Ritz Vectors

M o d e

1

Hz)

(Hz)Frequency

249 M o d e s

(Full order)

Newton

M e t h o d

0.7420

5.2940

7.0376

10.4862

17.4386

20.8236

31.2231
—-—

15 Modes

(Truncation)

0.7427 0.7420

5.2940

0.7420 0.7425

2 5,4263 5.2940

7.0376

5.3262
—

6.95403

4

7.4565

11.6777

7.0376

10,4862 10.4862

17.4386
——

20.8236

10.4493

20.7055

5 17.4248 17.4386 17.3444

6 20.8423

31.1387

20.8236

31.22317 31.2231 31.0481 I

Table 1 (a)

of Modal Frequencies and Dampings (Frequencies)Comparison
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Damped System
—

M o d e Damping (%)

12 Modes

249 Modes plus Newton 15 Modes

(Full order) 3 Ritz Vectors M e t h o d (Truncation)

1 0.0179 0.0179 0.0179 0.0012

2 4.5744 4.5744 4.5744 0.6125

3 25.5358 25.5357 25.5358 2.3228

4 32.6380 32.6379 32.6380 5.5664

5 0.9033 0.9034 0.9033 0.4066

6 1.3197 1.3197 1.3197 0.5709

7 “ 0.5013 0.5016 0.5013 0.5031

Table l(b)

Comparison of Modal Frequencies and Dampings (Dampings)

22



L
—.

M o d e

E

1

2

3

4

5

6

7

Damper Locations I
Hz-Norm Optimized

(6, 19, 91)

Dampings Optimized

(132, 140, 142)

Frequency (Hz) Damping (%)Lfiequency  (Hz) Damping (%)

0.7414 0.0245 0.7420 0.0179

5.0393 6.8905 5.2940 4.5744

7.1748 10.0192 7.0376 25.5358

11.4717 3.7751 10.4862 32.6380

17.5924 3.2823

20.9413 2.0084 --~

31.1573 I 0.0788 I 31.2231 I 0.5013 I

Table 2.

Comparison of Damped Eigenvalues
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Figure 1.
JPL CSI Phase B Testbed
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Figure 2.

Damping Prediction by Reduction Methods
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Figure 3.
Frequency Responses of Undamped and Damped Systems
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U n d a m p e d Not Tuned Timed
M o d e Frequency FYequency  I D a m p i n g Fkequency  I Damping

(Hz) (Hz) (%) (Hz) (%)
5 17.4248 17.2668 8.1733 16.1907 6.5787
6 20.8423 21.3353 3.9098 20,1644 8.0746
7 31.1387 32.1426 3.7256 30.5854 7.4840

Minimax
Figure 4.

Optimized Placement and Tuning
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